Beriklan di Blog Ini? .
MURAH DAN MUDAH.
Info Lebih Lanjut [ KONTAK KAMI]

Contoh Soal SBMPTN - Aplikasi Turunan

Di halaman ini akan diberikan contoh soal dan pembahasan aplikasi turunan yang meliputi laju perubahan, dan persamaan garis singgung. Sebelum memahami contoh soal ini alangkah akan lebih baik jika Anda membaca materi tentang turunan pada blog ini. Anda bisa lihat pada halaman daftar isi.

Soal 1. Misalkan luas sebuah segitiga sama sisi adalah fungsi dari kelilingnya. Bila keliling segitiga adalah x, maka laju perubahan luas terhadap kelilingnya adalah.

Pembahasan
Misalkan sisi segitiga s.
Keliling = 3s = x artinya s =1/3 kll.
Rumus cepat luas segitiga sama kaki: $ L= \frac {s^2}{4} \sqrt {3}$
Sekarang kita buat luas dalam fungsi x.
$$ L(x) =\frac {s^2}{4} \sqrt {3} \\ L(x)= \frac {( \frac {1}{3} x)^2 }{4} \sqrt {3} \\ L(x) = \frac {1}{36} x^2 \sqrt 3 \\ \text {kita turunkan} \\ \frac {dL}{dx} = \frac {2}{36} x \sqrt 3 \\ \frac {dL}{dx} =\frac {1}{18} x \sqrt 3 $$

Soal 2. Sebuah balon berbentuk bola sedang dipompa sehingga volumenya bertambah 100 $cm^3/detik$. Laju perubahan jari-jari balon ketika diameternya mencapai 50 cm adalah.

Pembahasan:
Diki: Kecepatan Volume $ \frac {dV}{dt} = 100 cm^3/detik$
r= 50 cm.
Dita: $ \frac {dr}{dt}$
Hasi: Sesuai sifat notasi turunan yang memenuhi sifat aljabar perkalian, kita bisa uraikan,
$$ \frac {dV}{dt} = \frac {dV}{dr}. \frac {dr}{dt} \\ \text {perhatikan volume bola} \\ V = \frac {4}{3} \pi r^3 \\ \text {turunkan terhadap r} \\ dV = 3. \frac {4}{3} \pi r^2 dr \\ \frac {dV}{dr} = 4. \pi r^2 \\ \text { balik ke persamaan di atas} \\ 100 = 4. \pi r^2. \frac {dr}{dt} \\ d=50 \rightarrow r=25 \\ 100 = 4.\pi . 25^2 \frac {dr}{dt} \\ \frac {dr}{dt} = \frac {1}{25 \pi } $$

Soal 3. Garis singgung kurva $ y=x^3-3x^2 $ di titik potongnya dengan sumbu x yang absisnya positif mempunyai gradien…

Pembahasan:
Kita akan cari nilai x terlebih dahulu. Titikpotong sumbu x, artinya y=0. $$ y=x^3-3x^2 \\ x^2(x-3)=0 \\ x=0 \cup x=3 \\ \text {ambil x=3 karena diminta positif}$$

Selanjutnya, kita cari gradien. Sebagaimana konsep gradien, yaitu m = y’. Kita turunakan fungsi $$ y=x^3-3x^2 \\ m=y ^ \prime =3x^2-6x \\ x=3 \\ m=3.3^2-6.3 \\ m=9$$

Soal 4. Persamaan garis singgung kurva $ y= \frac {2x+1} {2-3x}$ dititik (1,-3) adalah…

Pembahasan:
Rumus mencari persamaan garis adalah y-y1 = m (x-x1) dalam hal ini kita sudah memiliki x1 dan y1. Tinggal mencari m, dan m ini didapat dari turunan pertama. Ingat, m=y’. Jadi kita cari turunan $ y= \frac {2x+1} {2-3x}$. Sebab berbentuk pecahan gunakan rumus turunan $\frac {u}{v}$

$$ u= 2x+1 \rightarrow u ^ \prime=2 \\ v=2-3x \rightarrow v ^ \prime = -3 \\ ( \frac {u}{v} )^ \prime = \frac {u^ \prime v- uv^ \prime }{v^2} \\ m = \frac {2(2-3x)-(-3)(2x+1) }{(2-3x)^2} \\ m = {2(2-3.1)-(-3)(2.1+1) }{(2-3.1)^2} \\ m=7 \\ \\ \text {persamaan garis} \\ y-y_1=m(x-x_1) \\ y-(-3) = 7(x-1) \\ y-7x+10 $$

Soal 5. Grafik K: $y= \frac {x+1}{x-1} $ memotong sumbu x di titik A. dan garis g menyinggung grafik K dititik A. Jika garis h melalui titik A dan tegak lurus terhadap garis g, maka persamaan garis h adalah…

Pembahasan:
Perhatikan ilustrasi di bawah ini

Grafik K berwarna merah, dan memotong sumbu x titik A. Perpotongan dengan sumbu x artinya y=0. $$ y= \frac {x+1}{x-1} \\ 0= \frac {x+1}{x-1} \\ x=-1 \\ koordinat A(1,0) $$
Lalu ada garis g berwarna biru, menyinggung kurva di A. karena g garis singgung kita bisa tahu gradien garis g sama dengan turunan kurva. $m_g=y^ \prime \\ m_g= \frac {(x-1) – (x+1)} {(x-1)^2 } \\ m_g = \frac {-1}{2}$$
Karena garis g dan h saling tegak lurus maka berlaku $$m_g.m_h=-1 \\ \frac {-1}{2} . m_h=-1 \\ m_h=2$$
Gunakan rumus mencari persamaan garis:
$$y-y_1=m_h(x-x_1) \\ y-0=2(x-(-1) \\ y =2x+1$$

Soal 6. Jika garis singgung dititk (1,2) pada parabola $ y=ax^2+bx+4$ memiliki persamaan y=-6x+8. Tentukan nilai a dan b…

Pembahasan:
Garis singgung y=-6x+8. Gradien (m)= -6. X1= 1, y1=2.
$$m=y ^\prime = 2ax^2+b = -6 \\ x=1 \\ 2a+b=-6$$.
Titik singgung juga berada pada parabola, artinya titik (1,2) memenuhi persamaan parabola. $$ y=ax^2+bx+4 \\ 2= a.1^2+b.1+4 \\ a+b =-2 $$
Eliminasi persamaan 2a+b=-6 dan a+b=-2. Disini akan ditemukan a=-4 dan b=2.



Loading...

Jadilah Komentator Pertama untuk "Contoh Soal SBMPTN - Aplikasi Turunan"

Post a Comment